Blog Post References

Blog Post: Here’s the #1 secret to getting the autoimmune benefits of a ketogenic diet without wrecking your good gut bacteria in the process

[1]  Scott, J. M., & Deuster, P. A. (2017). Ketones and Human Performance. Journal of special operations medicine : a peer reviewed journal for SOF medical professionals, 17(2), 112–116.

[2] Zupec-Kania, B., & Zupanc, M. L. (2008). Long-term management of the ketogenic diet: seizure monitoring, nutrition, and supplementation. Epilepsia, 49 Suppl 8, 23–26. https://doi.org/10.1111/j.1528-1167.2008.01827.x

[3] Groleau, V., Schall, J. I., Stallings, V. A., & Bergqvist, C. A. (2014). Long-term impact of the ketogenic diet on growth and resting energy expenditure in children with intractable epilepsy. Developmental medicine and child neurology, 56(9), 898–904. https://doi.org/10.1111/dmcn.12462

[4] Kielb, S., Koo, H.P., Bloom, D.A., Faerber, G.J. (2005). Nephrolithiasis associated with the Ketogenic Diet. The Journal of Urology, 164(2), 464-466

[5] Burckhardt P. (2016). The role of low acid load in vegetarian diet on bone health: a narrative review. Swiss medical weekly, 146, w14277. https://doi.org/10.4414/smw.2016.14277

[6] Heikura, I. A., Burke, L. M., Hawley, J. A., Ross, M. L., Garvican-Lewis, L., Sharma, A. P., McKay, A., Leckey, J. J., Welvaert, M., McCall, L., & Ackerman, K. E. (2020). A Short-Term Ketogenic Diet Impairs Markers of Bone Health in Response to Exercise. Frontiers in endocrinology, 10, 880. https://doi.org/10.3389/fendo.2019.00880

[7] Simm, P. J., Bicknell-Royle, J., Lawrie, J., Nation, J., Draffin, K., Stewart, K. G., Cameron, F. J., Scheffer, I. E., & Mackay, M. T. (2017). The effect of the ketogenic diet on the developing skeleton. Epilepsy research, 136, 62–66. https://doi.org/10.1016/j.eplepsyres.2017.07.014

[8] Ding, J., Xu, X., Wu, X., Huang, Z., Kong, G., Liu, J., Huang, Z., Liu, Q., Li, R., Yang, Z., Liu, Y., & Zhu, Q. (2019). Bone loss and biomechanical reduction of appendicular and axial bones under ketogenic diet in rats. Experimental and therapeutic medicine, 17(4), 2503–2510. https://doi.org/10.3892/etm.2019.7241

[9] Scheller, E. L., Khoury, B., Moller, K. L., Wee, N. K., Khandaker, S., Kozloff, K. M., Abrishami, S. H., Zamarron, B. F., & Singer, K. (2016). Changes in Skeletal Integrity and Marrow Adiposity during High-Fat Diet and after Weight Loss. Frontiers in endocrinology, 7, 102. https://doi.org/10.3389/fendo.2016.00102

[10] Browning, K. N., Verheijden, S., & Boeckxstaens, G. E. (2017). The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation. Gastroenterology, 152(4), 730–744. https://doi.org/10.1053/j.gastro.2016.10.046

[11] Elbers, J., Rovnaghi, C. R., Golianu, B., & Anand, K. (2017). Clinical Profile Associated with Adverse Childhood Experiences: The Advent of Nervous System Dysregulation. Children (Basel, Switzerland), 4(11), 98. https://doi.org/10.3390/children4110098

[12] Dube, S. R., Fairweather, D., Pearson, W. S., Felitti, V. J., Anda, R. F., & Croft, J. B. (2009). Cumulative childhood stress and autoimmune diseases in adults. Psychosomatic medicine, 71(2), 243–250. https://doi.org/10.1097/PSY.0b013e3181907888

[13] Luyer, M.D.P., Buurman, W.A., Hadfoune, M., Jacobs, J.A., Dejong, C.H.C., Greve, J.W.M. (2006). High-fat nutrition inhibits inflammation via the vagus nerve: a novel neuro-immunological pathway. European Journal of Gastroenterology & Hepatology, 18(1), A6

[14] David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820

[15] Tagliabue, A., Ferraris, C., Uggeri, F., Trentani, C., Bertoli, S., de Giorgis, V., Veggiotti, P., & Elli, M. (2017). Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 Deficiency Syndrome: A 3-month prospective observational study. Clinical nutrition ESPEN, 17, 33–37. https://doi.org/10.1016/j.clnesp.2016.11.003

[16] David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820

[17] Tagliabue, A., Ferraris, C., Uggeri, F., Trentani, C., Bertoli, S., de Giorgis, V., Veggiotti, P., & Elli, M. (2017). Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 Deficiency Syndrome: A 3-month prospective observational study. Clinical nutrition ESPEN, 17, 33–37. https://doi.org/10.1016/j.clnesp.2016.11.003

[18] Natividad, J. M., Lamas, B., Pham, H. P., Michel, M. L., Rainteau, D., Bridonneau, C., da Costa, G., van Hylckama Vlieg, J., Sovran, B., Chamignon, C., Planchais, J., Richard, M. L., Langella, P., Veiga, P., & Sokol, H. (2018). Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nature communications, 9(1), 2802. https://doi.org/10.1038/s41467-018-05249-7

[19] Wang, S. Z., Yu, Y. J., & Adeli, K. (2020). Role of Gut Microbiota in Neuroendocrine Regulation of Carbohydrate and Lipid Metabolism via the Microbiota-Gut-Brain-Liver Axis. Microorganisms, 8(4), 527. https://doi.org/10.3390/microorganisms8040527

[20] Rohr, M. W., Narasimhulu, C. A., Rudeski-Rohr, T. A., & Parthasarathy, S. (2020). Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Advances in nutrition (Bethesda, Md.), 11(1), 77–91. https://doi.org/10.1093/advances/nmz061

[21] Duan, Y., Zeng, L., Zheng, C., Song, B., Li, F., Kong, X., & Xu, K. (2018). Inflammatory Links Between High Fat Diets and Diseases. Frontiers in immunology, 9, 2649. https://doi.org/10.3389/fimmu.2018.02649

[22] Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nature reviews. Neuroscience, 9(1), 46–56. https://doi.org/10.1038/nrn2297

[23] DellaGioia, N., & Hannestad, J. (2010). A critical review of human endotoxin administration as an experimental paradigm of depression. Neuroscience and biobehavioral reviews, 34(1), 130–143. https://doi.org/10.1016/j.neubiorev.2009.07.014

[24] Salazar, A., Gonzalez-Rivera, B. L., Redus, L., Parrott, J. M., & O’Connor, J. C. (2012). Indoleamine 2,3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral lipopolysaccharide immune challenge. Hormones and behavior, 62(3), 202–209. https://doi.org/10.1016/j.yhbeh.2012.03.010

[25] Wehrens, S., Christou, S., Isherwood, C., Middleton, B., Gibbs, M. A., Archer, S. N., Skene, D. J., & Johnston, J. D. (2017). Meal Timing Regulates the Human Circadian System. Current biology : CB, 27(12), 1768–1775.e3. https://doi.org/10.1016/j.cub.2017.04.059

[26] Mattson, M. P., Longo, V. D., & Harvie, M. (2017). Impact of intermittent fasting on health and disease processes. Ageing research reviews, 39, 46–58. https://doi.org/10.1016/j.arr.2016.10.005

[27] Noto, H., Goto, A., Tsujimoto, T., & Noda, M. (2013). Low-carbohydrate diets and all-cause mortality: a systematic review and meta-analysis of observational studies. PloS one, 8(1), e55030. https://doi.org/10.1371/journal.pone.0055030

[28] Seidelmann, S. B., Claggett, B., Cheng, S., Henglin, M., Shah, A., Steffen, L. M., Folsom, A. R., Rimm, E. B., Willett, W. C., & Solomon, S. D. (2018). Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. The Lancet. Public health, 3(9), e419–e428. https://doi.org/10.1016/S2468-2667(18)30135-X